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Introduction to ‘‘An Arbitrary Lagrangian–Eulerian
Computing Method for All Flow Speeds’’

1. INTRODUCTION the momentum equation with the equation of state, and
a rezone/map phase. The Lagrangian phase provides an

The initial description of the ALE methodology by Hirt explicit update of the equations of motion. When the mate-
et al. [1] is a remarkable paper in the sense that it describes rial velocities are much smaller than the fluid sound speed,
a generalized framework for fluid simulation consisting of the optional implicit phase allows sound waves to move
many diverse techniques, even though many of the compo- many cells per cycle, thereby significantly improving com-
nent pieces were not yet available. The ALE methodology putational efficiency. Finally, a rezone algorithm may pre-
combines the best features of Lagrangian and Eulerian scribe mesh velocities relative to the fluid, thus necessitat-
representations, resulting in a flexible and robust solution ing a remap phase in which the solution from the end of
algorithm. As a result, the ALE method has gained popu- phase two is mapped onto the new mesh. A particularly
larity for transient, high speed, large deformation problems important property of ALE is that it provides a means
of solid mechanics. For a review, see [2]. Nevertheless, of minimizing advection errors; this was emphasized by
ALE has not achieved comparable popularity in other Brackbill and Pracht [3] in their construction of an almost-
fields. One explanation for this might be that the combina- Lagrangian algorithm.
tion of so many diverse techniques requires a broad range Hirt, Amsden, and Cook identify and discuss important
of expertise not available to most researchers. In this brief aspects of each of the phases, some for the first time.
introduction, I will summarize these disparate elements/ For example, in the Lagrange phase the importance of
issues as assembled by Hirt, Amsden, and Cook, and cite conservation is emphasized, and a surface integral formula-
more recent references that provide effective solutions. I tion of the equations is presented—an early example of
will finish by describing some as yet unresolved issues. what are now known as finite volume techniques. A short

discussion of artificial viscosity alludes to the advantages
of a full viscous stress tensor. The issue of null space modes2. THE ALE METHODOLOGY
is presented in the context of hourglassing patterns and
an alternate node coupler is proposed.Prior to the 1974 paper of Hirt et al., the computational

fluid dynamicist was limited to Lagrangian or Eulerian The pressure iteration is described heuristically in terms
of sound wave propagation. A simple point Newton–methods. In Lagrangian simulations, the mesh moves with

the local fluid velocity. Lagrangian methods maintain good Raphson iteration with overrelaxation is proposed. This
iteration is inefficient when compared with preconditionedresolution during large scale compressions/expansions and

are well-suited to maintaining multimaterial interfaces. A conjugate gradient techniques that became widely known
a few years later by Kershaw [4]. However, the readerparticular advantage of the Lagrangian representation is

that it is the only frame in which the advective terms vanish should realize that Newton–Raphson is a matrix-free itera-
tive technique and that computers of the early 1970s hadidentically. On the other hand, multidimensional Lagran-

gian meshes tend to tangle and in general cannot represent relatively small memories. The remapping algorithms are
similarly simple, being based on interpolated donor cell.large deformations due to shear and vorticity. In Eulerian

simulations, the mesh is fixed in space and the fluid moves Again, the reader should realize that the first nonoscilla-
tory advection schemes were just being developed in thefrom one cell to another. Eulerian meshes are not subject

to tangling, but the solutions are diffusive and it is difficult early 1970s [5].
One issue that is surprisingly discussed only briefly isto maintain sharp material interfaces.

The Lagrangian and Eulerian representations are only that of strategies for rezoning. I believe the authors felt that
the most effective rezoners were specific to the particulartwo special cases of mesh motion; the essence of the ALE

idea is that the mesh motion can be chosen arbitrarily, problem at hand. In general, the strategy will be to maintain
the Lgarangian nature of calculation as much as possible.providing additional flexibility and accuracy. The three

phases of an ALE simulation, as described by Hirt et al., However, as the mesh moves, the truncation error associ-
ated with irregular spacing may begin to dominate theare an explicit Lagrangian update, an implicit iteration of
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diffusive error of remapping. I will describe two ap- for controlling null space modes is filtering. Margolin and
Pyun [9] construct an approximate local projection of theproaches to quantifying these ideas in the next section.

In addition to the description of algorithms, Hirt et al. global hourglass mode and use it to filter the velocity field.
A second approach, due to Dukowicz and Meltz [10] showsprovide valuable detailed discussions of several practical

matters. These include the use of cylindrical coordinates that at least part of the unphysical mesh distortion is due
to spurious vorticity introduced by discretization errors.and an efficient programming method for using the same

coding for both X-Y and R-Z simulations; the implementa- Dukowicz and Meltz propose correcting the vorticity and
then reconstructing the velocity field. This algorithm re-tion of several different boundary conditions; and the nec-

essary time step controls to ensure computational stability. quires solving a single Poisson equation. Still at third ap-
proach, termed temporary triangular subzoning or TTS

3. RECENT ALGORITHMIC ADVANCES [11], subdivides the computational cell into four triangles
each with its own pressure. This subgrid structure allows

In this section I refer the reader to newer ideas for many the cell to sense null space patterns and to respond to
of the component algorithms of an ALE code. them. Although the original TTS formulations were found

to overly stiffen the mesh, there is now renewed interest
a. Phase 1

in this approach.
Artificial viscosity has been the subject of continuousMuch effort has gone into improving the quality of the

Lagrangian update, from the points of view of accuracy, research since its introduction by von Neumann and Richt-
myer in 1950. Wilkins [12] gives an excellent review of thepreserving flow symmetries, and energy conservation. The

fluid equations can be written in terms of a few spatial formulation of a tensor viscosity, with special attention
paid to the choice of length scale in the viscous coefficient.operators, such as gradient, divergence, and curl. It has

been realized that the discrete representation of these op- Noh [13] discusses more subtle problems associated with
lack of steadiness of the shock front on a nonuniform mesh.erators should be chosen to preserve certain properties of

analytic operators and to preserve relationships between Noh also discusses wall-heating effects and introduces the
idea of artificial heat conduction. Several of the test prob-the operators.

A particular example concerns the conservation of en- lems introduced by Noh have become standards of the
community. Dukowicz [14] offers an insightful discussionergy. Although Hirt et al. suggest using the total energy

equation, it is preferable to use the internal energy equa- of the relation of artificial viscosity in finite difference/
finite volume schemes to the Riemann solution in low ordertion for high speed (i.e., kinetic energy dominated) flows.

The reason is that small errors in the kinetic energy, which Godunov schemes. Christiansen [15] has extended these
ideas to derive a ‘‘flux-limited’’ viscosity from consider-is ultimately derived from the momentum equation, lead

to large errors in the internal energy and, hence, to large ation of higher order Godunov schemes. Flux-limited vis-
cosities enable finite difference/finite volume schemes toerrors in the pressure derived from the equation of state.

By choosing the discrete divergence operator to be adjoint capture shocks in only two computational cells. At present,
these schemes are implemented in multidimensional codesto the gradient operator, it is possible to use the internal

energy equation and still ensure total energy conservation by direction splitting.
to machine accuracy. This fact was made use of by Sulsky
and Brackbill [6]. A systematic approach to deriving dis-

b. Phase 2
crete operators, termed support operator theory, has been
developed by Shashkov and is presented in his book [7]. The computational efficiency of iterative solvers for ma-

trix equations has increased dramatically over the pastOf course, the discrete operators can only preserve a subset
of the properties of the analytic operators. Whalen [8] 20 years, mainly due the use of Krylov space methods

combined with powerful preconditioners. An early exam-provides an interesting discussion of the possibilities and
trade-offs of different discretizations in cylindrical coordi- ple of these technique implemented on an irregular La-

grangian mesh (albeit for diffusion rather than hydrody-nate systems. For example, Whalen demonstrates the dif-
ficulty of simultaneously conserving total energy, preserv- namics) is given by Kershaw [4]. A physics-based

derivation of a Krylov space method, with applicationsing entropy, and maintaining symmetry in a spherical
implosion. to incompressible flows, is found in Smolarkiewicz and

Margolin [16]. Here the iterative solution is found as theThe problems of null space modes has also received
attention over the past 20 years, and many effective solu- steady state of a second-order (or higher) wave equation

(see also Ramshaw and Mesina [17]). An interesting appli-tions have been put forth. Null space modes refer to pat-
terns of velocity that distort the shape or size of a cell, but cation of discretization based on support operator theory

to the formulation of the elliptic operator is given by Shash-which do not produce restoring forces. Hourglassing and
chevroning are two examples of such patterns. One method kov and Steinberg [18]. An advantage of this formulation
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is that discrete approximations to self-adjoint positive- An alternate approach to multidimensional advection
is the MPDATA (multidimensional positive definitedefinite operators are symmetric and positive definite. This

means that conjugate gradient methods can be applied, advection transport algorithm) of Smolarkiewicz [26].
MPDATA is not based on flux-limiting, but rather on theyielding efficient iterative solutions.
properties of upwind differencing. MPDATA limits the

c. Phase 3
advective velocities as opposed to the flux components,
and so it is fully multidimensional. MPDATA is also aAlthough effective strategies can be found for particular

problems, the key to a successful ALE code is a general multipass algorithm and accurately represents corner cou-
pling. There is no requirement that the rezone/remaprezoning algorithm that does not require user intervention.

The landmark paper by Brackbill and Saltzman [19] ap- phase must be part of every computational cycle, and in-
deed, large improvements in computational efficiency canproaches this issue in terms of the computational mesh.

Brackbill and Saltzman formulate a rezoner based on a be realized when phase 3 is invoked less frequently. In this
case, there is no guarantee that the rezone velocities arevariational principle to optimize the smoothness, orthogo-

nality, and other desirable properties of the mesh. Each small, in which case a nonlocal remapper is required. The
general rezoning algorithm of Dukowicz and Kodis [27]property is quantified as a global sum of quantities deter-

mined by the local mesh geometry; the user can determine provides an efficient mechanism for finding the overlay of
two quadrilateral, but otherwise arbitrary, meshes. Thisthe relative importance of these properties by prescribing

weights for each of the sums. The variational principle technique has been extended to hexahedral meshes in three
dimensions [28].leads to an elliptic problem; usually only a few iterations

of this problem are required on each computational cy-
4. UNRESOLVED ISSUEScle—that is, the rezone velocities need only relax toward

the optimal mesh.
a. ALE vs SALE

An alternate approach by Dukowicz [20] is derived from
the technique of moving finite elements (MFE) [21]. MFE A major limitation of the algorithm described by Hirt,

Amsden, and Cook is that there can be no rezoning acrossis an extension of the usual finite element approach in
which the mesh coordinates themselves are considered as material interfaces. A powerful extension to these simple

ALE schemes (SALE) is to incorporate a volume of fluidindependent variables whose values can be varied to opti-
mize the accuracy of the solution. Dukowicz derives an capability (VOF; see Hirt and Nichols [29]) into the La-

grangian cells. VOF technques were originally developedapproximate splitting of the total MFE operator (which
advances both the fluid solution and the mesh) and isolates to introduce a Lagrangian tracking capability for material

interfaces into Eulerian codes. In fact, VOF methods dothe part of the operator that moves the mesh. This ap-
proach optimizes the rezoning in the metric of the equa- not track interfaces, but rather, they reconstruct them on

every cycle based on local values of the VOF variable. VOFtions, i.e., by minimizing the solution error.
When the rezone velocities are sufficiently small, the methods require a generalization of the data structures of

code—some cells will have more than one energy, density,remapping is local in the sense that the cell mass is gained
or lost only from neighboring cells. The remapping is then and perhaps other thermodynamic variables. Furthermore,

the number of materials in a cell will vary over the coursedescribed by an advection equation. The production of
nonoscillatory schemes for one-dimensional advection has of a calculation.

The chief difficulty in implementing VOF in an ALEexploded over the past 20 years, beginning with the FCT
schemes of Boris and Book [5] and the early work of van code does not center on the irregularity of the Lagrangian

mesh, but rather in the compressibility of the fluid. VOFLeer [22]. Some recent algorithms of interest include the
FCT formulation of Zalesak [23], and the general class of techniques have rigorous basis only for incompressible

flows. In particular, during the Lagrangian phase updatetotal variation diminishing (TVD) schemes (see Sweby
[24], for a review). of a mixed cell, how should one apportion the total change

of volume and the total work between the two materials?One issue with these techniques is that they are inher-
ently one-dimensional and are applied in multidimensional The simple assumption that the VOF variable does not

change is certainly inadequate when the two materials havecodes by direction splitting (see also Leveque [25]). This
splitting can lead to noticeable errors on a regular Eulerian much different compressibilities—consider the case of a

mixed cell containing a solid and a gas. Assumptions ofmesh and may be even more serious on an irregular La-
grangian mesh. An additional issue is that of corner cou- pressure and/or temperature equilibrium are similarly in-

adequate during the passage of a shock wave. The evolu-pling. When the rezone velocity of a cell vertex points into
a diagonal neighbor cell (that is, a cell that shares a vertex tion of the VOF variable during the Lagrange phase of a

compressible flow must still be considered an unsolvedbut not a full side), a second-order error results, reducing
the overall accuracy of the advection to the first order. problem.
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